Lagrangian and Euler-Lagrange Equation
L=T−U
dtd∂q˙i∂L−∂qi∂L=0
Reduced Mass Equation
m1+m2m1m2=μ
Centrifugal Potential
Ucf=2μr2l2
Effective Potential
Ueff=U+Ucf
Orbit
∂θ2∂2u+u=−l2μu21F(u1)
Continuous Distribution Inertia Tensor
Iij=∫ρ(δijk∑xk2−xixj)dV
Ajk matrices
Ajk=∂qj∂qk∂2u
Eigenfrequency and Eigenvector relations
det[Aˉ−ω2mˉ]=0
[Aˉ−ω2mˉ]⋅v=0
μr formula
μr=L20∫Lq(x,0)sin(Lrπx)dx
νr formula
νr=−ωrL20∫Lq˙(x,0)sin(Lrπx)dx
position of strings formula
q(x,t)=r=1∑∞sin(Lrπx)(μrcos(ωrt)−νrsin(ωrt))