Central forces and the Hamiltonian

Hamiltonian form:

Energy is conserved,

Spherical symmetry of the problem implies that angular momentum is conserved

Therefore , are in the same plane

Central Forces motion in a plane

Using Polar Coordinates example

Do Euler-Lagrange Equation

Combining these two

This yields us 2 coupled differential equations for and . We want to divorce these equations

Referencing equation 1 above, we can plug equation 3 into that

Multiply by 1 ()

Analyzing LHS

Analyzing RHS

Using these two, we can look at the equation 4 from above and use the chain rule example from above

\mu \dot{r}\ddot{r} = \left( \frac{l^{2}}{\mu r^{3}} - \frac{ \partial u }{ \partial r } \right) \dot{r}

\frac{d}{dt}\left( \frac{1}{2}\mu \dot{r}^{2} \right) = -\frac{d}{dt} \left( \frac{1}{2} \frac{l^{2}}{\mu r^{2}}+u \right)

\frac{d}{dt} \left( \frac{1}{2} \mu \dot{r}^{2} + \frac{1}{2} \frac{l^{2}}{\mu r^{2}}+u \right) =0

$E=$ constant Compare to original E-L equation

E=T+ u = \frac{1}{2}\mu(\dot{r^{2} + r^{2} \dot{\theta}^{2}})+u(r) = \frac{1}{2} \mu \dot{r}^{2} + \frac{1}{2} \frac{l^{2}}{\mu^{2} r^{2} }+ u(r)

Solve for $\dot{r}$

\dot{r} = \pm \sqrt{ \frac{2}{\mu} \left( E-u-\frac{l^{2}}{2\mu r^{2}} \right) } = \frac{dr}{dt}

t = \int\limits_{r_{0}}^{r} \frac{1}{\pm \sqrt{ E-u-\frac{l^{2}}{2\mu r^{2}} }} , dr

Rearrange and integrate -> $r(t)$ Can find $\theta(r)$

\dot{\theta}=\frac{ d \theta }{ d t } = \frac{l}{\mu r^{2}}

\frac{d\theta}{dr} = \frac{ d \theta }{ d t } \frac{ d t }{ d r } = \frac{\dot{\theta}}{\dot{r}}

d\theta = \frac{\dot{\theta}}{\dot{r}}dr

\theta = \int  \frac{l}{\mu r^{2}}\left[ \frac{2}{\mu}\left( E-u-\frac{l^{2}}{2\mu r^{2}} \right) \right]^{-1/2} \, dr
This will again depend on the potential for $u\propto r ^{n+1}$, $F(r) \propto r ^{n}$ for $n=1,2,3$ Solutions will be oscillating (sin & cos) Orbits: ($r(\theta)$) Go back $r(t)$

\mu \ddot{r} - \mu r \dot{\theta}^{2} + \frac{ \partial u }{ \partial r } =0

u \ddot{r} - \frac{l^{2}}{\mu r^{3}} = - \frac{ \partial u }{ \partial r } = F(r)

\frac{\mu d^{2}}{dt^{2}} r - \frac{l^{2}}{\mu r^{3}} = F(r)

\frac{d\theta}{dt}=\frac{l}{\mu r^{2}}

\mu r^{2}d\theta = ldt

\frac{d}{dt} = \frac{l}{\mu r^{2}} \frac{d}{d\theta}

\frac{d^{2}}{dt^{2}} = \frac{l}{\mu r^{2}}\frac{d}{dt} \left( \frac{l}{\mu r^{2}} \frac{d}{d\theta} \right)

\mu \frac{l}{ur^{2}} \frac{d}{d\theta}\left( \frac{l}{\mu r^{2}} \frac{ d r }{ d \theta } \right) - \frac{l^{2}}{\mu r^{3} } = F(r)

If we know the orbit $r(\theta)$ then we can express the force or vice versa: Solving for $r(\theta)$

\frac{1}{r^{2}} \frac{ d r }{ d \theta } = - \frac{ d }{ d \theta } \frac{1}{r}

\frac{l^{2}}{\mu}\left[ \frac{1}{r^{2}} \frac{d}{d\theta}\left( -\frac{d}{d\theta} \left( \frac{1}{r} \right) \right)-\frac{1}{r^{3}} \right] = F(r)

\frac{l^{2}}{\mu r^{2}} \left[ \frac{d^{2}}{d\theta^{2}} \left( \frac{1}{r} \right) +\frac{1}{r} \right] = -F(r)

E-u - \frac{l^{2}}{2\mu r^{2}}

Define potential energy $u_{e} = \frac{l^{2}}{2\mu r^{2}}$

F_{e} = -\frac{ \partial u }{ \partial r } = \frac{l^{2}}{\mu r^{3}}=\mu r\theta^{2}

v=u + \frac{l^{2}}{2\mu r^{2}}

F(r) = -\frac{k}{r^{2}}

V(r) = -\frac{k}{r} + \frac{l^{2}}{2\mu r^{2}}

## Dynamics of systems of particles Motion of the system = Motion of the center of mass of the system + the motion of particles relative to the center of mass For $n$ particles of mass $m_{i}$ at positions $\vec{r}_{i}$

\vec{R}{cm} = \frac{\sum^{n}{l=1} m_{i}\vec{r}{i}}{\sum^{n}{i=1} m_{i}}

=\frac{1}{M_{tot}} \sum^{N}{i=1} m{i}\vec{r}_{i}

\vec{R}_{cm} = \frac{\int \vec{r}dm}{\int , dm }

\rho = \frac{m}{v}

dm = \rho dV

=\frac{\int \vec{r}\rho , dv }{\int \rho , dv }

\rho=\rho(r)

\vec{P}{tot} = \sum^{N}{i=1} \vec{P}{i} = \sum^{N}{i=1} m_{i} \vec{v}_{i}

N particles of $\vec{P}_{i}$ momentum Conservation of linear momentum

\frac{d\vec{P}_\text{tot}}{dt}=0

if $\vec{F}_\text{tot}=0$ and internal forces obey newtons 3rd law i.e $F_{ij}=-F_{ji}$ Velocity of center of mass

\vec{V}{com} = \frac{d\vec{R}{com}}{dt} = \frac{1}{M_{tot}} \sum^{N}{i=1} m{i} \frac{d\vec{r}{i}}{dt}= \frac{1}{m{tot}} \sum^{N}{i=1} m{i}\vec{v}_{i}

=\frac{\vec{P}{tot}}{M{tot}}

\vec{P}\text{tot} = M\text{tot} \vec{V}_{com}

\vec{P}{tot} = M{tot}\vec{V}_{com}

\frac{ d \vec{P}{tot} }{ d t } = \vec{F}\text{ext} = \frac{d}{dt} (M_\text{tot}\vec{V}\text{com}) = M\text{tot} \frac{d\vec{V}_\text{com}}{dt}

\frac{d\vec{V}\text{cm}}{dt}=\vec{A}\text{com}

\vec{L}\text{tot} = \vec{R}\text{com} \times \vec{P}\text{tot} + \sum^{N}{i=1} \vec{r}{i}’ \times \vec{P}‘{i}

The first term $\vec{R}_\text{com}\times \vec{P}_\text{tot}$ is angular momentum of the center of mass about the origin The second term $\sum^{N}_{i=1} \vec{r}'_{i} \times \vec{P}_{i}'$ is the angular momentum of particles about the center of mass