Continued from 2024-02-02 General Coordinates Continued
We went briefly over two methods to solve the ball rolling down a slope problem. Here is the first method, Substitution
L = 2 1 M x ˙ 2 + 2 1 I R 2 x ˙ 2 − M g ( l − x ) sin ϕ
d t d ∂ x ˙ ∂ L − ∂ x ∂ L = 0
∂ x ˙ ∂ L = M x ˙ + R 2 I x ˙ ( 1 )
d t d ( Equation 1 ) = M x ¨ + R 2 I x ¨
∂ x ∂ L = M g sin ϕ
( M + R 2 I ) x ¨ − M g sin ϕ = 0
x ¨ = M + R 2 I M g sin ϕ
Method 2, using Lagrange Multipliers
L ~ = L + λ f = 2 1 x ˙ 2 M + 2 1 I θ ˙ 2 − M g ( l − x ) sin ϕ + λ ( x − Rθ )
Resulting equations:
For x
d t d ∂ x ˙ ∂ L ~ − ∂ x ∂ L ~ = 0
∂ x ˙ ∂ L ~ = M x ˙
d t d ∂ x ˙ ∂ L ~ = M x ¨
∂ x ∂ L ~ = M g sin ϕ + λ
M x ¨ − M g sin ϕ − λ = 0 ( 2 )
For θ
d t d ∂ θ ˙ ∂ L ~ − ∂ θ ∂ L ~ = 0
d t d ∂ θ ˙ ∂ L ~ = I θ ¨
∂ θ ∂ L ~ = − R λ
I θ ¨ + λ R = 0
Use Acceleration relationships
θ ¨ = R x ¨
I R x ¨ + λ R = 0 → λ = − R 2 I x ¨
Plug into equation 2
M x ¨ − M g sin ϕ + R 2 I x ¨ = 0
x ¨ ( M + R 2 I ) = M g sin ϕ
x ¨ = M r + R 2 I M g sin ϕ
This matches the last equation! they both give the right answer. Lets solve for λ now
λ = ( M + R 2 I ) R 2 − M g sin ϕ I = M R 2 + I − M g sin ϕ I
What is λ ?
After some dimensional analysis, we can determine that it is a force. In fact, you could call it the forces of constraint (singular). It turns out that in this equation, it is the force of friction on the ball.
For a disk I = 2 1 M R 2
x ¨ = M + 2 1 M M g sin ϕ = 3 2 g sin ϕ
λ = M R 2 + 2 1 M R 2 − M g sin ϕ ( 2 1 M R 2 ) = − 3 1 M g sin ϕ
∑ F = m x ¨
m g sin ϕ − F = M x ¨
m g sin θ − R 2 I x ¨ = m x ¨
T = I α = r × F ⟹ I α = R f
R I x ¨ = R f
f = R 2 I x ¨
NB: there will be problems on the exam that require classical Newtonian mechanics
Conservation laws in Lagrangian Motion
Conservation of energy
If the following is true, energy is conserved
1:
∂ t ∂ L = 0
Time is homogeneous, L is invariant under translation in time.
No explicit time-dependent forces of constraint
2: Kinetic energy is only a function of generalized velocity
T ( q ˙ j ) ∝ q ˙ j q ˙ k
3: Velocity and time are independent
u = u ( q j )
Generalized Lagrangian is
L = L ( q j , q ˙ j ) = T ( q ˙ j ) − u ( q j )
d t d L ( q j , q ˙ j , t ) = j ∑ [ ∂ q j ∂ L q ˙ j + ∂ q ˙ j ∂ L q ¨ j ] + ∂ t ∂ L = 0
Remember:
d t d ∂ q ˙ ∂ L − ∂ q ∂ L = 0 → ∂ q ∂ L = d t d ∂ q ˙ ∂ L
d t d L = j ∑ [ d t d ∂ q ˙ j ∂ L q ˙ j + ∂ q ˙ j ∂ L q ¨ j ]
d t d l = j ∑ ⋯ = 0
so the sum has to be a constant
d t d [ L − j ∑ q ˙ j d q ˙ j d L ] = 0
we can call this constant − H
− H = L − j ∑ q ˙ j ∂ q ˙ j ∂ L
for H is constant if ∂ t ∂ L = 0
H = j ∑ q ˙ j ∂ q ˙ j − L ∂ L = E
Show H = E
Remember T ( q ˙ j ) ∝ q ˙ j q ˙ k
∂ q ˙ j ∂ L = ∂ q ˙ j ∂ ( T − u ) = ∂ q ˙ j ∂ T
if u = u ( q j )
H = ∑ q ˙ j ∂ q ˙ j ∂ T − L = j ∑ q ˙ j ∂ q ˙ j ∂ T − ( T − u )
T = j 1 k ∑ a j , k q ˙ j q ˙ k
∂ q ˙ l ∂ T = k ∑ q l , k q ˙ k + j ∑ a j l q ˙ j
l ∑ q ˙ l ∂ q ˙ l ∂ L = l , k ∑ a l , k q ˙ l q ˙ k + l , j ∑ a j , l q ˙ j q ˙ l = 2 T
So
H = j ∑ q ˙ j ∂ q ˙ j ∂ L − L = 2 T − ( T − u )
= 2 T − T + u = T + u = E total
This is the Hamiltonian , the same one from Quantum Physics
L = T − u = 2 1 m ( x ˙ 2 + y ˙ 2 ) − m g y
x = l sin θ ⟹ x ˙ = l θ ˙ cos θ
y = − l cos θ ⟹ y ˙ = l θ ˙ sin θ
H = j ∑ q ˙ j ∂ q ˙ j ∂ L ⟹ H = θ ˙ ∂ θ ˙ ∂ L − L
However, lets look at an accelerated pendulum -
L = T − u = 2 1 m ( x ˙ 2 + y ˙ 2 ) − m g y
x = l sin θ + 2 1 a t 2
x ˙ = a t + l θ ˙ cos θ
y = − l cos θ
y ˙ = l θ ˙ sin θ
x 2 = a 2 t 2 + l 2 θ ˙ 2 cos 2 ( θ ) + 2 a tl θ ˙ cos θ
where ∂ t ∂ L = 0
L = 2 1 m [ a 2 t 2 + l 2 θ ˙ 2 + 2 a tl θ ˙ 2 cos θ ] + m g l cos θ
its not conserved. Makes sense because the system is accelerating
Conservation of momentum
1: Space is homogeneous, the Lagrangian is invariant under space translation in the direction of q j
∂ q j ∂ L = 0 ( 3 )
P j = ∂ q ˙ j ∂ L
This is our generalized momentum, conserved if (3) is true
In Cartesian coordinates:
∂ x ∂ L = 0 , P i = ∂ x ˙ i ∂ L is conserved
Consider Euler-Lagrange Equation again
d t d ∂ q ˙ j ∂ L − ∂ q j ∂ L = 0
d t d ∂ q ˙ j ∂ L = ∂ q j ∂ L = 0 ?
∂ q j ∂ L = P ˙ j
Force is the negative gradient of potential
If we look at the LHS of the above equation,
d t d ∂ q ˙ j ∂ L = 0
means that
∂ q ˙ j ∂ L = P j = constant
Newton
d t d P = F
Example: 3d projectile
F = 0 0 − m g
L = 2 1 m ( x ˙ 2 + y ˙ 2 + z ˙ 2 ) − m g z
∂ x ∂ L = 0 → d t d ∂ x ˙ ∂ L = 0
∂ x ˙ ∂ L = P x = constant
∂ y ∂ L = 0 ⟹ d t d ∂ y ˙ ∂ L = 0
∂ y ˙ ∂ L = P y = constant
∂ z ∂ L = − m g
P z = constant
∂ x ˙ ∂ L = m x ˙
∂ y ˙ ∂ L = m y ˙
Another example: pendulum
Skipping setup, go straight to Lagrangian
L = 2 1 m l 2 θ ˙ 2 + m g l cos θ
∂ θ ∂ L = − m g l sin θ = 0
P θ = constant
P 0 = ∂ θ ˙ ∂ L = m l 2 θ ˙
Angular Momentum