• A cycloid curve is a curve that is the path traced by a circle rolling.
  • 3Blue1Brown video on this is good

Derivation of cycloid curve from calculus of variations and Euler-Lagrange Equation

The speed of the particle

The total time is the integral over

What is

is conserved because gravity is conservative

Compare to

Use Euler-Lagrange Equation

Square both sides

2ay’^{2}-xy’^{2} = x

y^{2}(2a-x) = x

y’^{2} = \frac{x}{2a-x} \left( \frac{x}{x} \right) = \frac{x^{2}}{2ax-x^{2}}

\frac{dy}{dx} = \frac{x}{\sqrt{ 2ax-x^{2} }}

\int  \, dy  = \int \frac{x}{\sqrt{ 2ax-x^{2} }} \, dx 

x = a(1-\cos(\theta)) ; \ dx = a\sin \theta d\theta

y (x) = \int \frac{a(1-\cos \theta)a\sin\theta}{\sqrt{ 2a^{2}(1-\cos\theta)-a^{2}(1-\cos\theta)^{2} }} \, d\theta

2a^{2} - 2a^{2}\cos\theta -a^{2} + 2a^{2}\cos\theta-a^{2}\cos ^{2}\theta

a^{2} - a^{2}\cos ^{2}\theta

y(x) = \int \frac{a^{2}\sin\theta(1-\cos\theta)}{\sqrt{ a^{2}-a^{2}\cos \theta }} , d\theta= \int a(1-\cos(\theta)) , d\theta

= y(x) = a(\theta-\sin\theta)+ \text{constant}

x=a(1-\cos(\theta))