- A cycloid curve is a curve that is the path traced by a circle rolling.
- 3Blue1Brown video on this is good
Derivation of cycloid curve from calculus of variations and Euler-Lagrange Equation
The speed of the particle
The total time is the integral over
What is
is conserved because gravity is conservative
Compare to
Square both sides
2ay’^{2}-xy’^{2} = x
y^{2}(2a-x) = x
y’^{2} = \frac{x}{2a-x} \left( \frac{x}{x} \right) = \frac{x^{2}}{2ax-x^{2}}
\frac{dy}{dx} = \frac{x}{\sqrt{ 2ax-x^{2} }}
\int \, dy = \int \frac{x}{\sqrt{ 2ax-x^{2} }} \, dx
x = a(1-\cos(\theta)) ; \ dx = a\sin \theta d\theta
y (x) = \int \frac{a(1-\cos \theta)a\sin\theta}{\sqrt{ 2a^{2}(1-\cos\theta)-a^{2}(1-\cos\theta)^{2} }} \, d\theta
2a^{2} - 2a^{2}\cos\theta -a^{2} + 2a^{2}\cos\theta-a^{2}\cos ^{2}\theta
a^{2} - a^{2}\cos ^{2}\theta
y(x) = \int \frac{a^{2}\sin\theta(1-\cos\theta)}{\sqrt{ a^{2}-a^{2}\cos \theta }} , d\theta= \int a(1-\cos(\theta)) , d\theta
= y(x) = a(\theta-\sin\theta)+ \text{constant}
x=a(1-\cos(\theta))