Problem 1:
Relevant Equations:
F=ma=mdtdv
F(v)=−F0ev/B=mdtdv
This is a velocity dependent force.
1a.
Finding an expression for velocity using separation of variables
−F0ev/B=mdtdv
dt=−F0ev/Bmdv
Integrate both sides
t=−F0m∫ev/B1dv
t=−F0m∫e−v/Bdv
t=−F0m(−B)e−v/B+c
t=BF0me−v/B+c
Solve for V, removing constant and will add in v0 at the end
mBF0t−c=e−v/B
Take Ln of both side
ln(mBF0t−c)=−Bv
v(t)=−Bln(mBF0t−c)
Solving for c:
v(0)=−Bln(0−c)
e−v0/B=−c
c=−e−v0/B
v(t)=−Bln(mBF0t+e−v0/B)
1b.
0=−Bln(mBF0t+e−v0/B)
Because B=0, we have to find the value of t that makes the argument of the ln function 1, because that will be equal to 0
1=mBF0t+e−v0/B
1−e−v0/B=mBF0t
t=F0mB(1−e−v0/B)
1c. Find the equation of motion
dtdx=−Bln(mBF0t+e−v0/B)
dx=−Bln(mBF0t+e−v0/B)dt
∫dx=∫ln(mBF0t+ev0/B)dt
x(t)=mBF0mBF0t+ev0/Bln(mBF0t+e−v0/B)−t
Problem 2 (special relativity)
Robbers vehicle is traveling at 0.9c. Police vehicle is traveling at 0.75c. Dart traveling at 0.75c relative to police vehicle.
v′=1−c2v1v2v1−v2
v′=1+c2v1v2v1+v2
v′=1+9/163/4+3/4
v′=25/166/4
v′=46⋅2516
v′=10096
v′=2524>109
Therefore the dart will catch up.
Question 3. Relativistic Lagrangian
L(x,x˙)=−mc21−c2x˙2−21kx2
Equations of motion
dtd∂x˙∂L−∂x∂L=0
−mc2(1−c2x˙2)1/2−21kx2
∂x˙∂L=2c22mc2x˙(1−c2x˙2)−1/2
∂x˙∂L=1−c2x˙2mx˙
∂x˙∂L=mx˙(1−c2x˙2)−1/2
dtd∂x˙∂L=mx¨(1−c2x˙2)−1/2−2c2x¨2mx˙(1−c2x˙2)−3/2
∂x∂L=−212kx
∂x∂L=−kx
Euler Lagrange Equation
mx¨(1−c2x˙2)−1/2−2c2x¨2mx˙(1−c2x˙2)−3/2+kx=0
At non-relativistic speeds
mx¨(1−c2x˙2)−1/2−2c2x¨2mx˙(1−c2x˙2)−3/2+kx=0
mx¨+kx=0
Question 4. Lagrangian Mechanics
a. Find the Lagrangian of the system
+y is up, +x is to the right
L=T−U
T=21mv2,U=mgh
x=Lcosθ; x˙=L˙cosθ−Lθ˙sinθ
y=Lsinθ; y˙=L˙sinθ+Lθ˙cosθ
T=21m((L˙cosθ−Lθ˙sinθ)2+(L˙sinθ+Lθ˙cosθ)22
T=21m((L˙cosθ−Lθ˙sinθ)2+(L˙sinθ+Lθ˙cosθ)2)
T=21m((L˙2cos2θ+L2θ˙2sin2θ−2L˙Lθ˙cosθsinθ)…
+(L˙2sin2θ+L2θ˙2cos2θ+2L˙Lθ˙sinθcosθ))
T=21m((L˙2cos2θ+L2θ˙2sin2θ)+(L˙2sin2θ+L2θ˙2cos2θ)
T=\frac{1}{2}m(\dot{L}^{2}(\cos ^{2}\theta + \sin ^{2}\theta) + L\dot{\theta}^{2}(\cos ^{2}\theta + \sin ^{2}\theta))
$$ $$
T = \frac{1}{2}m(\dot{L}^{2}+L\dot{\theta}^{2})
U=mg(Lcosθ)
L=21m(L˙2+Lθ˙2)+mg(Lcosθ)
Sub in α and apply small angle approx.
L=21m(α2+Lθ˙2)+mgL
Solve the Euler-Lagrange Equation
L=21mα2+21mLθ˙2+mgLcosθ
∂θ˙∂L=mLθ˙
dtd∂θ˙∂L=mL˙θ˙+mLθ¨
∂θ∂L=mgL˙cosθ−mgLsinθ